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In studying flows of electrically conducting fluids in channels or 

various ConfiguratIons, it is signirlcant to take account or the com- 
pressibility and also of the dependence of the transport coefficients on 
the variables of state of an ionized gas. Using somewhat broad assump- 
tions in regard to the properties of the gas Bleviss [l] obtained and in- 

vestigated a solution for the magnetogasdypmic Couette flow. Calcula- 
tions of the dependence of the conductivity upon the temperature lead to 
the deteralnat$on of the hysteresis character of the variation of the 

wall friction. These rindings were confirmed later by Bush [21 who in- 
vestigated the compressibility of a magnetogasdynamical boundary layer 
on a plate. 

In the present paper it will be shown that a solution of the problem 
of steady flow of an ionized gas in a plane channel may be obtained for 

an arbitrarily chosen law of variation with temperature of the coeffi- 
cients of viscosity and of electroconductivity when the motion is caused 
by external mutually normal magnetic and electrical fields. 

Consider the steady motion of an electroconductlve gas in an in- 
finitely long plane channel in the presence of mutually normal electric 
and magnetic Melds. Let us choose a right handed coordinate system so 
that 

vx = U(Y), B, = B,, Et = - SO, i, = i(Y) 

Because all the quantities in a given case depend only on the trans- 
verse coordinate y, the initial system of equations has the form 
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where the Prandtl number P and the specific heat cP are considered to be 
constant. q and h are the coefficients of viscosity and of heat con- 

ductivity, respectively. After eliminating the current density j from 
the equations of motion and of energy, we obtain 

(2) 

By integration of this equation with the boundary conditions u = 0 

and T= T, for y = It a, (where 2a is the height of the channel, T, is 
the temperature of the walls) we find the following relation between the 

temperature and the velocity of the gas: 

(3) 

Eliminating now the current density from the equations of motion and 
ohm’s law, choosing the gas velocity to be the new variable and introdnc- 
ing the laminar shear stress T = qduldy we obtain 

7_!!5 
du 

= B&q (u - z&J) (u+) 

In integrating Equation (4) a constant of integration is determined 

from the boundary condition 

?=O, u=u* for y=O 

where ea is the unknown maximum velocity occurring 

pipe. 

on the axis of the 

ge obtain the relation between the friction and 

, un 

the velocity 

(4) 

(5) 

where the upper sign should be assumed for y > 0 and the lower for 

(6) 

y < 0. 

Sinoe the coefficients a and q are assumed to be given functions of the 
temperature, then on the basis of (3) they may be considered to be known 
functions of the velocity. 

Integration of Equation (6) gives the desired relation between the 
velocity of the gas and the coordinate 
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y=t a- 
i s rl (u) du 

J (u, Urn) ) 
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If herein it is assumed that for y = 0, u = un, we obtain from it a 

relation either for the determination of uD1 for a given dimension a of 

the channel or for the determination of dimension a for a given maximum 

gas velocity Us 

%I 

Cl= s ? (~1 du 
J (uv um) 

0 

Using (8), we may write (7) in the form 

(8) 

For particular values of constants ‘1 and u the evaluation of the in- 

tegral in (8) yields 

u, = ug (1 --=A) where CM = Boa j/p) -is tk;mli;;tman (IO) 

When completing the integration of (9) and taking into account (lo), 

we find the following equation for the distribution of velocities in a 

channel : 
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It is not difficult to generalize the solution obtained in [I] of 

variable specific heat capacity c 
P’ 
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